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The exterior algebra formalism is presented, then used to obtain, in a very simple way, Bril- 
louin's theorem, and to derive the general algebraic equations of the various variational spaces 
explored by RHF, ROHF, UHF, CASSCF, UCASSCF, CI methods. When a given basis set 
of one-electron orbitals (not necessarily orthogonal) is fixed, these equations lead to analytical 
equations for the CI coet~cients only. The important algebraic concepts (i.e. concepts that do 
not refer to any particular basis set) of internal space, length and factorization of a multi-con- 
figuration are also introduced. 

1. I n t r o d u c t i o n  

The main  objective of  this paper is to provide a new algebraic insight into the tra- 
ditional variational methods of  quan tum chemistry. In this respect, the exterior 
algebra formalism has been found to be a more  convenient alternative to describe a 
set of  fermions than the traditional Slater determinant  formalism. The exterior 
algebra [1] is a Clifford algebra [2] similar to the multi-vector algebra [3] used by 
Hestenes in m a n y  fields of  physics, but the exterior algebra has been preferred in 
this paper,  because it affords a more  specific approach to a fermionic system, in the 
same way as the symmetric algebra [4] would do, for a bosonic system. The Grass- 
man  algebra, also well known in physics [5], is the coalgebra o f  the exterior alge- 
bra, and this pair constitutes a Hopf  algebra [6]. However,  in finite dimension, the 
Grassman  algebra and the exterior algebra are usually considered as identical [7]. 

In this paper we assume that  the basic notions of  quan tum chemistry (natural  
orbitals, self-consistent field (SCF) methods,  etc.) are known, though we recall that  
the variational method  in quantum physics solves the problem of  the s tat ionary 
points stat~, E v <O>~ of  the expectation value of  an operator  O, when the n-particle 
wave function ~ runs over a chosen variational space V (and when the derivatives 
do exist). However,  for the whole class of  SCF methods,  extensively used in quan- 
tum chemistry,  the variational space V was not  known, and the actual variational 
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problem was solved indirectly. We present here the first explicit equations which 
characterize the variational spaces explored by the main SCF methods in use in 
quantum chemistry. 

The paper is organized so that the mathematical tools offered by the exterior 
algebra are first introduced, followed by a simple proof of Brillouin's theorem [8] 
for unrestricted methods and, finally, we show how powerful the exterior algebra 
formalism can be by working out the algebraic equations of the variational spaces 
explored by quantum chemistry calculations. These equations give analytical equa- 
tions when an arbitrary basis set of configurations is chosen, and this leads to inter- 
esting possibilities for the theoretical investigation of variational methods. 

2. The exterior algebra AE 

2.1. THE ELEMENTS OF THE ALGEBRA AE 

The algebra first contains a field K (real or complex numbers), and the K-vector 
space E of the one-fermion, say the one-electron, spin-orbitals, whose basis set is 
(~¢i)i<~m" It also contains the exterior products ofp spin-orbitals of E, q~lA... Aq~p, 
which are the p-electron configurations (in this definition a configuration is not 
necessarily an eigenfunction of $2), it finally contains the linear combinations of all 
the elements already described. 

2.2. STRUCTURE OF THE ALGEBRA AE 

The vector space of p-electron multi-configurations, denoted APE (that is the 
set of linear combinations of p-electron configurations) is a vector subspace of AE 
whose dimension is 

m! 
CPm - (m-p)!p!  O<~p~m. 

The set of p-electron configurations 

(#I)lep,,,e, = ( ~ i  A . . .  A~i~)I~<i I <...<i,~<m 

built by using the basis set of E, is a basis set of APE. (Pm~ denotes the set of thep- 
element subsets of { 1 , . . . ,  m}, by convention #0 = 1 .) 

The algebra AE has a graded structure, that is to say: 
m 

(a) AE = @ APE with A°E = K, AlE = E,  
p=0 

(b) (APE)A(AqE) c__ Ap+qE. 
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Attention is drawn to the fact that the Fock space of second quantization has the 
same structure. 

2.3. PRODUCTS OF THE ALGEBRA 

2.3.1. The exteriorproduct A 
This product, first used in quantum chemistry by Coleman [9] and followers, 

allows us, as do creation operators of second quantization, to add a spin-orbital ¢ 
to ap-electron multi-configuration, 

= Z AXffrK' 
K e P=~, 

to give a (t7 + 1 )-electron multi-configuration, 

CA# = ~ AKCA~k,A... A~k p . 
K 

The main properties of this product are the following: 

(a) • IA. . .  ACp = 0 

if and only i f¢ l , . .  •, Cp are not linearly independent. 

(b) Ca(1)A... ACa(p) = ea¢lA.. .  ACp, (2.1) 

where a is a permutation of { 1,. . .  ,p} and e~ is + 1 i fa  is even, - 1 i fa  is odd. 

(c) CxA... A(A¢i + #¢'i)A... ACp 

= A¢IA...  A¢iA.. .  ACp + #¢1A.. .  A¢'iA... ACp. (2.2) 

2.3.2. The interiorproduct ~_l 
Denote (¢1 g )  as the inner product on the one-electron space E (this can be f dr 

or f dp for the spatial part). An induced inner product is defined on APE for 
~5 = ¢1A.. .  ACp, ~ = N1A... AVp, by setting 

@S[~p) = det((¢i[ ~'j))ij<p, 

where the right-hand side (r.h.s.) is the determinant of the matrix ((¢ilVj))ij<~p. 
The interior product is a generalization of the induced inner product, to the case 
where the two multi-configurations do not have the same number of electrons. 

In order to define the interior product, we set, for all H,K subsets of 
{1, . . . ,m}, 

PH,K:O if H N K # O  

and 

PH,K---(--1) v if H N K = O ,  
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where v is the number of couples ( i , j )  e H x K such that i >j ,  so that 

~ H A ~ K  = PH,K~HUK ; 

for all K e Pp,q, we denote K' the element of  Pp~_q such that 

K'  tO K = {1, . . . ,p} . 

Let • = ¢ I A . . .  ACq and ~P = ~,IA.. .  A~,p be two configurations, then the interior 
product is defined by a formula analogous to the one used by Greub [10]: 
i f q > p  

i f  q<~p 

~ J ~ P =  ~_, det((¢ilg/k,))ij<qPK,K,g'K,. (2.3) 
KePp.q 

This definition is extended linearly to multi- configurations. 

R e m a r k  2.1 
I f #  is a scalar A, 

A ~ ~P = AA~V = A~v. 

The interior product allows us, as do annihilation operators of second quantiza- 
tion, to kill a spin-orbital ¢ in a p-electron multi-configuration ~, ¢ ,__1 ~eAp- lE .  
We must draw attention to the fact that when we mix the interior product with the 
exterior product, the order of parentheses is very important: (~i ,__l ff')AX is usually 
different from • J (~PAX). Indeed, an interesting relation given by Bourbaki [11] 
is 

2.4. RELATION WITH THE TRADITIONAL FORMALISM 

The traditional way of building antisymmetrical functions is as follows [5]. First 
a 1-particle Hilbert space E is given and the Fock space F, i.e., the tensorial algebra 
of E is built, 

F = E °  @ . . . @ E n @ . . .  

where (9 is the direct sum and E" the n-particle space (tensorial product of n times 
e) 

E n = E ® . . . ® E .  
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Then, fermionic n-electron functions are obtained by applying the projection 
operator, 

A (n) = ~ Z ( - 1 ) P P ,  
P 

(where P is a permutation of the tensorial components), and by renormalizing, 
since a projector does not preserve the norm. 

So q~l ®---  ® ~b, gives 

1 
~-I i (n)(~l  ® . . .  @ (~n = V~.T ~ p  (-1)PgbP(l) @ . . .  @ q~e(n), (2.4) 

which is in the r-representation the usual Slater determinant 

q)l (rl)  q~l ( r 2 ) . . .  ~bl (r,) 

1 q~2(rl) q~2(r2) . . .  dp2(rn) 

~bn(rl) dpn(r2) . . .  dpn(rn) 

The exterior algebra used in this paper, though isomorphous to the traditional 
formalism, is of a more convenient use. For instance, the 1.h.s. ofeq. (2.4) is written 
simply ~blA... A~b,. The product being intrinsically antisymmetrical, there is no 
need for renormalization. 

In the traditional approach, second quantization creation operators can be writ- 
ten formally as 

a/+ ---- (~i @ • 

Then, in order to obtain fermion creation operators, use of the antisymmetrical 
operator 

A = Z A(") 
n 

has to be made 

Fa+ = A a + A .  

In the exterior algebra formalism, second quantization fermionic operators are 
obtained readily by writing formally 

F a+ =-- qbii, F ai __ c~i j 

As a result, density operators are neatly expressed without need for normalization 
factors. The p-particle density matrix elements and kernel of the density operator 
of a pure n-particle state • are written, respectively, as 

%...ipa,...j, = ((~b;,A... Aq~,,) ,_1 ,pl(q~/,A... Aq~jp) ,_1 ,/~), (2.5) 
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and 

"V(rl/Zl...rp#pf1#'l... rp#p) = ((6r, u,A.. .  A6r~,~)J ~l(~e,u,, A . . .  A~¢~) ,__1 ~5,  

where ri and #i, are respectively, space and spin variables, and 8~, the Dirac distri- 
bution centered on the point (r, #). 

Finally, the exterior algebra happens to be, even when it is used at the level of 
wave functions, i.e. in the Schr6dinger representation of quantum mechanics, as 
convenient as fermionic second quantization is in the Heisenberg representation. 

2.5. G E O M E T R I C A L  I N T E R P R E T A T I O N  O F  A M U L T I - C O N F I G U R A T I O N  

One can associate to any n-electron multi-configuration 4~ of AnE one and only 
one vector subspace of the one-electron vector space E, that we call the "internal 
space of ~". This subspace is defined to be the smallest, with regards to its dimen- 
sion, vector subspace N ___ E such that • e AnN (identifying AnN as a vector sub- 
space of AnE), and is denoted by [~]. The dimension of [4~] is called the "rank o f ~ "  
and is denoted by p(~), 

p(~) = dim[~] ~>n. 

When p(~b) -- n, • is said to be "decomposable" and can be condensed into only 
one configuration. 

This provides us with a geometrical picture of a multi-configuration ~ in the vec- 
tor space E. The interior product plays a part, similar to that usually played by sca- 
lar products, in obtaining the orthogonal complement of [~], 

[~]± = {~beE, q~A~ = 0}. (2.6) 

Let's notice that a diagonal matrix element "V/i (see eq. (2.5)) is equal to 0 if and 
only if q~i ,_1 ~ = 0 i.e. q~i e [~]±, so that the internal space [~] is the vector space 
spanned by the occupied natural spin-orbitals (the natural spin-orbitals are defined 
to be those which diagonalize the one-electron density matrix). As an example 
take the two electrons of the hydrogen molecule, and the four spin-orbitals 
1 a 1 a 18 ls~ B SA ~ Sa ~ SA 

(a) Consider the non-normalized covalent function, 

~e = I~AAls~, + I~BAls~A , 

we have, by using eq. (2.6) and denoting by lSA,~* 1 SB'~* lSA'8* 1S~ the dual basis set, 

[~c] "L = {~ - xl~*sA +'I"*Y S~ + zls~ + tls~, ~,--I ~c = 0} . 

For ~, expressed as above we obtain by using eq. (2.3) 

= - z  ~ -tl~A ~uJ~c xls~B+YIs~ ls B 

so that 
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[¢o]± = {0}, 

and thus 

= E ,  

p(O) = 4 ,  

and 4~c is not decomposable. 
(b) Now consider the case of the non-normalized, half-ionic, half-covalent func- 

tion, 

#--- I~AAIs~B + I~BAIs~A + I~AAIs~A + I~BAIs~a. (2.7) 

This time we find for 

. l~,  + zls~ + tls~; = x l ~  + y  s~ 

~' J #  -- (x + y)(ls~ A + ls#B) - (z + t)(l~A + ls~ ) . 

Since I~A + l~s~ and ls~ A + ls~ B are linearly independent, 

gives 

x =  - y ,  

Z =  - - t .  

so that 

[#]± K r l  °'* 1,~,~ = ' s A -  sBjoK(ls#~  ls~;) 

and thus 

[~] = K(I~A + ls~)@ K(ls~ A + ls~,), 

= 2 ,  

and 4~ is decomposable. Indeed it is well known, that • can be constructed from 
only two spin-orbitals 

= (ls~ + l~,)A(ls~ A + ls~), (2.8) 

where the two electrons are in the bonding orbital. This example is interesting 
because it can be checked by hand; however the procedure works for arbitrary num- 
bers of electrons and orbitals and could be used to analyze the wave function given 
by a large configuration interaction calculation. It is mathematically simpler than 
the extraction of the natural spin-orbitals. 
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2.6. LENGTH OF A MULTI-CONFIGURATION 

Another  concept to be introduced is called the length of a multi-configuration 
[12], and denoted by/(~) .  It is defined to be the least integer k such that  we may 

write • as a sum o fk  decomposable elements: 

q~ = ~ Di (Di decomposable).  
i <~k 

The D; are generally not unique. For instance, in the case l = 2, 

qS~A~b~ + ~b2Aq5 2 = ,~-  A + 

Obviously l(~) = 1 if and only i f~  is decomposable. 
The problem of the determination of  the length of a multi-configuration has 

not  been solved. Its solution nonetheless could help us to understand why the non- 
orthogonal  orbitals of Valence-Bond functions reduce the number  of  configura- 
tions needed to expand the wave function. 

2.7. FACTORIZATION OF A MULTI-CONFIGURATION 

The partit ioning of the one-electron orbitals in use in quantum chemistry is sum- 
marized in the diagram below: 

one-electron 
orbitals 

core orbitals 

{ valence orbitals (occupied in the reference) 
internal orbitals 

external orbitals ~" valence orbitals (not occupied in the reference) 
L virtual orbitals 

This terminology is usually employed with respect to a given calculation; how- 
ever, some of  these terms can be defined for an arbitrary multi-configuration with- 
out  any reference to any calculation. For  instance, an internal orbital of  a multi- 
configuration • can be defined to be any orbital of  the internal space [~]. Then, for 
a given calculation, a set of internal orbitals is defined rigorously as a set of  orbitals 
that  spans the sum of the internal space of  the reference multi-configurations. The 
sets of  internal orbitals defined this way are the most  compact  sets that  can be 
used to excite a multi-configuration (compare eqs. (2.7) and (2.8)). 

The core orbitals of a multi-configuration can also be given a proper definition, 
since the core spin-orbitals are those that  factorize the multi-configurations. So, 
an orbital q~ is said to belong to the core of  an n-electron multi-configuration ~, if 
and only if, ~i can be written as 

= #~Aq~aA# ' , 



P. Cassam-ChenaF/ Variational spaces 311 

where ~' is an (n - 2)-electron multi-configuration. The problem of  the factoriza- 
tion of  a multi-configuration has been addressed, and a solution has been found 
[13] which states that one can factorize • by a spin-orbital q~, if and only if, adding 
an electron in ~ to • gives zero, ~bA~ = 0. This theorem can be used to obtain the 
core orbitals of  a multi-configuration. For a given calculation the core orbitals are 
then defined to be the orbitals belonging to the intersection of  the core spaces of  
the reference multi-configurations. 

The occupied valence space is the orthogonal  complement  of  the core space in 
the internal space. 

Finally, we define the active space of a multi-configuration involved in a multi- 
configuration self-consistent field (MCSCF) process to be the orthogonal  comple- 
ment  of  the frozen space (space spanned by the non variationally optimized orbi- 
tals) in the internal space. In the following, we only consider the case where no 
orbital is frozen, so that the active space and internal space are identical. 

3. Br i l louin 's  t heo rems  

3.1. THE U H F  CASE 

Take a configuration optimized at the unrestricted Har t ree-Fock (UHF) level 
for the ground state of  a Hamiltonian H, 

= ~blA~b2A... A~bn. 

Now consider a mono-excited configuration, 

• ' = ~uAq~2A... A~bn 

with 

(3.0) 
Denote by if' a general multi-configuration built with ~ and ~', 

= Aq~IA~2A... Aq~, + #~,AqhA...  Aq~,. 

is decomposable 

= (Aq~l + # v ) A $ 2 A . . .  ASn. 

Since the U H F  process has selected the best decomposable function with respect 
to energy (within a constant factor), the energy of  ~P can only be higher than the 
energy of  #, so that  # '  cannot improve the energy obtained with #, and as a result 
the matrix element of the Hamiltonian between # and #'  must  be zero. 
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3.2. T H E  U M C S C F  C A S E  

Consider a multi-configuration optimized at the unrestricted multi-configura- 
tion self-consistent field (UMCSCF) level, 

4~ = AI¢IA¢~A.. .A¢,  1 + . . .  + Apq~IAC~2A...A~ 

with 
p 

IAil 2 = 1. 
i=I 

Assuming, without loss of generality, ¢~ = ¢~ if and only ifj  = 1 and k ~< l, we con- 
sider the multi-configuration ~' (with relation (3.0) satisfied), 

~ ' =  AI~CA¢IA... A¢ 1 + . . .  + A, gAet2A... A¢',. 

We set 

• " = #~ + u~' 

with #, u such that ~ is normalized. Then ~P can be written as 

(~¢I + u~') A . . . A ¢  1 + . . .  + ~ (~¢{ + uV') A . . .A¢ ' ,  ¢, 

v/I,I ~ + I,I 2 V/I,? + I.I 2 
+ . . . + ; , ~ A . . . A < ,  

where 

Zi = Ai# for i > I, 

~', = ~,v/l~l 2 + I~12 for i<~l. 

~-~'~ I~';I 2= <~1~)= 1 
i 

so that ~ belongs to the variational space explored by the UMCSCF calculation. 
The same argument as previously gives us that 

(mlUl~ ' )  = 0. (3.1) 

More generally, a BriUouin theorem is obtained by considering the set of multi- 
configurations which, when linearly combined with the variational solution, give a 
multi-configuration that belongs to the variational space explored by the calcula- 
tion performed. Lemma 5 of Wei-Liang Chow [14] claims that a linear combination 
of two n-electron configurations is an n-electron configuration only if the intersec- 
tion of the internal spaces of the two configurations is of dimension n - 1, which 
implies that our proof of Brillouin's theorem cannot be extended to a multi-excita- 
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tion in the U H F  case; however, in the UMCSCF case, one can find a more general 
theorem. For instance, if 

= (q~lA¢2 -4- ~3A¢4) 

then for doubly excited functions like 

~t = 1 (t//1A¢2 + iP,3A~b4 ) 

our argument can be applied to prove directly that eq. (3.1) is satisfied. As a gen- 
eral rule, when different spin-orbitals are such that we never have two of them in 
the same configuration of ~, the multi-excitations from these spin-orbitals give 
multi-configurations ~' such that again we get eq. (3.1). This section points out the 
importance of a knowledge of variational spaces and leads us to study the spaces 
explored by various, well-known, variational methods of quantum chemistry. 

4. Variational spaces of  quantum chemistry 

We have already given a geometrical interpretation of a multi-configuration in 
the vector space E, and are now going to visualize variational spaces in AnE. We 
begin by defining the unrestricted complete active space self-consistent field 
(UCASSCF) process, and giving the equation of the associated variational space, 
then we explain how to get the CASSCF variational spaces, we next illustrate the 
equations previously derived in the case of two electrons and two orbitals, and 
finally we make some remarks about the CI process. 

4.1. THE UCASSCF SPACE 

We will assume henceforth that the exact solution of the problem we are consid- 
ering is an eigenfunction of S 2, Sz, and the point group symmetry operators. Conse- 
quently, we deal here with eigenfunctions of St, and a variational process will be 
"unrestricted" when it does not constrain its solution to be an eigenfunction of S2 
or of the point group symmetry operators. 

Assume there are n electrons, and m independent fixed orbitals. Define the 
UCASSCF process of dimension p to be the variational calculation that explores 
all the n-electron, normalized, eigenfunctions of Sz with rank less than or equal top  
(i.e. whose active space's dimension is less than or equal top). This can be a process 
searching for a minimum or a stationary point. Such a calculation provides the 
best multi-configuration built with the best p linear combinations of the 2m spin- 
orbitals, with respect to the variational observable. That is precisely the idea of a 
calculation that optimizes both the "CI vectors" andp spin-orbitals. 
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It has been shown [15] that the multi-configurations explored by such a process 
have an active space that can be written as a direct sum of an c~-spin part and a/3- 
spin part. That means that the active spin-orbitals can be chosen to be a linear com- 
bination of spin-orbitals of the same spin, as expected. 

The equation of the variational space of a UCASSCF of dimension p is given 
by the following theorem [15], provided that one adds the normalization restric- 
tion 

(~1~) = 1, (4.1) 

and the"Sz restriction" 

Sz~ = S z ~ .  (4.2) 

(The spin operators defined on the tensorial algebra induce well-defined spin opera- 
tors on the exterior algebra.) 

THEOREM 4.1 

The active space of an n-electron multi-configuration • has a dimension less 
than or equal top (p ~> n) if and only if for all ~0, ~1, • • •, ~p-n e An-IE we have 

(~0 ~l ~)A(~I J ~ ) A . . .  A(~p_, .__1 ~5)A~ = 0. (4.3) 

Practically, the ( n -  1)-electron multi-configurations ~i run over a basis set 
and lead to a finite system of equations. We remark that for p = n we obtain the 
U H F  equation, that is the equation of the space of decomposable multi-configura- 
tions. 

Remark 4.1 
A well-known result for the exterior algebra claims that the rank of an n-elec- 

tron multi-configuration cannot be (n + 1). So that the case p = n + 1 is not rele- 
vant. 

4.2. THE CASSCF SPACE 

The CASSCF case is "spin-restricted" because of the spin-equivalence restric- 
tion [16], i.e. the spatial part of the spin-orbitals must be equal for pairs ofc~- and/3- 
spin-orbitals. For instance in the restricted open-shell Hartree-Fock (ROHF) 
case, the restriction means that the occupation number of the occupied (natural) 
orbitals can only be 1 or 2. This restriction turns out to be equivalent to the "S 2 
restriction" [17], i.e. the multi-configuration is an eigenfunction of S 2. Therefore, 
in order to obtain the CASSCF space, it is only necessary to add the following 
restriction to eqs. (4.1), (4.2) and (4.3): 

$2~ = S(S + 1)~b. (4.4) 
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Remark  4.2 
Strictly speaking, restrictions due to the symmetry of the molecule must also be 

added. 

Remark  4.3 
The case n = p gives the ROHF space. We consider through this paper the 

restricted Hartree-Fock (RHF) space as a particular case of ROHF space. 

Remark4 .4  
The dimension of a CASSCF, in this paper, is defined to be the dimension of 

the active space, which is twice the dimension of the "spatial active space" [17] if 
S = 0. Usually the dimension of a CASSCF is defined to be the dimension of the 
spatial active space. 

Remark  4.5 
The extended Hartree-Fock space is the projection of the UHF space on a given 

eigenspace of S 2, Es. It contains the ROHF space which is the intersection of the 
UHF space and Es. 

4.3. E X A M P L E  

Consider the problem of two electrons and two orbitals. Denoting by ,~a ,~a ,~ 'e'l ~ 'e'2 ~ '/'1 
and ¢2 ~ the four fixed spin-orbitals (assumed to be orthonormal for simplicity), the 
most general 2-electron multi-configuration is written as 

= a ¢~A¢1 ~ + b ¢~A¢2 ~ 4- c ¢~A¢~ + d ¢~A¢2 ~ + e ¢~A¢~ + f  ¢1 zA¢2"e 

(a) Derivation ofeq. (4.3) forp = 2: 

¢~ J ~5 =a¢~ + b¢2 ~ + e e l ,  

( ¢ ? J ~ ) A # = a b  e c, e e a e + a e ¢ ~ A ¢ ? A ¢ ~  ¢1 A¢I A¢2 + ad ¢I A¢2 A¢2 

+ ab ¢2~A¢~A¢~ + bc ¢~2A¢~A¢~ + be ¢2~A¢~A¢~ 

¢~Aq~ aA'4'/~ ¢~A¢~A¢2 ~ + e f  ¢ 2 A ¢ 1  A¢2 , + ae 2"" l*'Wl -~- be a # 5 

then making use ofeq. (2.1) and eq. (2.2), 

(¢~ A~)A~  = ( b c - a d  + ef)¢~A¢~A¢2 ~ , 

so eq. (4.3) leads to 

b c - a d + e f = O .  (4.5) 
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(~b~ J ~ ) A ~ ,  (~q J ~ ) A ~ ,  (~2 ~ J ~ ) A ~  should  be evaluated as well, nevertheless,  
because of  the invariance under  exchange of  the par t  played by ~b~, q~2, ~ a t~l, q~2' they 
would  yield the same equation.  The final equat ion,  fo rp  = 2, is thus eq. (4.5). 

Remark 4.6 
Eq. (4.5) is no t  the equat ion of  a vector  subspace, actually U C A S S C F  spaces 

are cones but  not  vector  spaces in general, so that  the opt imized wave funct ion  is 
not  an eigenfunct ion of  the variat ional  observable. 

Remark 4. 7 
Eq. (4.5) is easy to compute  since only very simple algebraic rules are required 

to derive it; however  the e l iminat ion of  r edundan t  equat ions p roduced  by eq. (4.3) 
may  need a more  subtle algori thm. 

Remark4.8 
The case p = 3 is equivalent  to the case p = 2 ( remark 4.1), and for p >~ 4 we find 

that  the U C A S S C F  is the full (unrestricted) conf igura t ion interact ion (CI) case. 

(b) The  normal iza t ion  restrict ion is very simple in the case of  an o r t h o n o r m a l  
basis set: 

14 2 + Ibl 2 + Icl 2 + 14 2 + lel 2 + bCl 2 = 1. (4.6) 

(c) Der iva t ion  of  the Sz restriction: 

Sz~ = - ~  ~=~ a = b = c = d = e = 0,  

Sz~ = + ~  ¢* a = b = c = d = f  = 0,  

Sz~ = 0 ~ e = f  = 0. 

(4.7) 

(4.8) 

(4.9) 

(d) Der iva t ion  of  the S 2 restriction: We easily find using 

s 2 = + s _ s + )  + Sz 

tha t  

b = c  
S = 0 ~=~ S2~ = 0 ¢ ,  (4.10) 

e = f = 0 ,  

b =  - c  
S = 1 ¢* $2~ = 2 ~  ¢ ,  ( 4 . 1 1 )  

a = d = 0 .  

A m o n g  the eqs. (4.5) to (4.11), eq. (4.6) is the only one tha t  would  change if 
q~l, ~b2 were not  o r thonormal ,  so we can check eq. (4.5) using the n o n - o r t h o n o r m a l  
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w a v e  func t ion  (2.6) where  a = b = c = d = 1,e = f  = 0. In this case  eqs. (4.5), 
(4.9) and  (4.10) are found  to be satisfied. 

(e) The  re levant  case Sz = 0 has  been  represen ted  in fig. 1. A s s u m i n g  a # 0 and  
real  coeff ic ients  we  have  rewr i t ten  ~/i as 

~5 = a (¢?A¢~  1 + fl¢~A¢2 ~ + 7¢~A¢~ + 6¢~A¢2 ~) 

by  set t ing 

a / ~ = b ,  a 7 = c ,  a 6 = d .  

The  four  pa rame te r s  are l inked by  the no rma l i za t ion  cond i t ion  

3 2 + . ) , 2 + 6 2  - 1 a2 1. 

The  three,  real, pa rame te r s /3 ,  7, 6 are cons idered  as independen t  and  va ry ing  on  
] - o% +c<~[ and  an axis is a ssoc ia ted  with each paramete r .  In the  3-d imens iona l  
space  ob ta ined ,  eq. (4.5) b e c o m e s  

(4.12) /37 = 6, 

which  is c lear ly the equa t ion  o f  a set o f  hyperbo lae .  E q u a t i o n  (4.10) gives 

/ 3 = 7 .  (4.13) 

A" 

Fig. 1.2 electrons, 2 orbitals, Sz = 0. Each point in the cube corresponds to a multi-configuration, 
the centre of the cube O being the configuration ¢~'A¢1 ~. The volume of the cube is the full unrestricted 
CI space, the hyperbolic surface (AOB~ClY) is the UHF space. The plane (ADB~C ') corresponds to 
the eigenfunctions ofS 2 with S = 0 (singlet plane). The intersection between the UHF surface and the 

singlet plane gives the RHF curve (A OB'). 
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Since eqs. (4.12) and (4.13) are invariant  under  the t rans format ion  

it is only necessary to picture these equations in a cube, the figure remaining the 
same when the scale is changed according to the above transformation. 

The cube of fig. I has the following summits: 

= i ~ ~ - ,~AJ A 2(¢1A¢I - ¢?A¢2 B W2 1 + ¢ ~ A ~ 2 )  , 

B= ½(¢~A¢~ + ¢~A¢2~ - ¢~A¢I ~ + ¢~A¢2~), 

c e e ~(¢1 h ¢ l  + - - = ~ 2  1 

D = ~(¢,1 ~ Aq~l~ _ ¢~A¢2B _ ¢~A¢~ _ ¢~A¢2~) 
A / = I  a fl ~(¢1A¢, - ¢~A¢2 ~ + ¢~A¢1 ~ + ¢~A¢2~), 

- 2(¢, A¢, + ¢?A¢2 ~ + ¢2Aq~ll + Cah A ~ 2  w2,, 

c '  ¢ A¢2 = ~ ( ¢ 1  A ¢ l  + + - , 

D ' ' ~ Z-¢?A¢2~ ¢~A¢~ ¢~A¢2 ~) = i(¢1 A¢I + - • 

The centre of  the cube is 

o = 

The figure provides an interesting compar i son  of  the different var iat ional  meth-  
ods. The volume of  the cube (ABCDA'B'  U D  ~) corresponds  to all the wavefunct ions  
tha t  a full unrestr ic ted CI would  consider ( though its solut ion would  be an eigen- 
funct ion  of  $2). The plane (ADf fC ' ) ,  whose equat ion  is eq. (4.13), cor responds  to 
the surface a full CI with S = 0 would  explore. The  Hyperbol ic  surface (A OB ~ CD ~) 
is the set of  wavefunct ions  considered by a U H F  process. Finally the one-dimen-  
sional line (A Off) ,  which is the intersection between the plane S = 0 and the U H F  
surface, represents R H F  wavefunctions.  

In the case a = 0, another  3-dimensional  representa t ion would  be relevant,  the 
three axis being associated with the parameters  b, c, d. Equat ions  (4.5) and  (4.9) 
would  give 

b c =  0, 

so tha t  the U H F  space would  be the reunion of  the two circles 

b 2 + d 2 = 1, 

c 2 + d 2 = 1. 
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The R O H F  space reduces to only two points, 4-¢~A¢2 ~ i fS = 0, and to 0 i fS  = 1. 

(f) Generalization. The previous example provides a simple 3-dimensional fig- 
ure that more complicated cases would not provide. However, the general equation 
exhibits the same hyperbolic structure. Equation (4.3) does not imply a particular 
choice of basis, nevertheless if a fixed induced basis set, (Ol)zEez~, is chosen eq. 
(4.5) can be generalized. 

Writing 

= ~ alffQ 
I 

it has been shown [15] that eq. (4.3) yields the following system of equations: for 
all H o,  . . . , H p - n  ~ P2m,n-1 and G ~  P2m~+l 

E PHo,{ko). . .  PHp-.,{kp-.}P{ko,...,kp-.},6"k(ko,...,kp-.} 
ko,...,kp_, e c 

k~ ~ Ht,kt#kj if i#j 

x anou{k0) --. anp_~u{kp_,}a6~{ko,...,kp_,} = O, 

which holds whether the one-electron orbitals are orthogonal or not. 

R e m a r k 4 . 9  

In practice, when the variational observable commutes with S 2 and Sz, we may 
deal with a basis of eigenfunctions of S 2 and Sz, so that the number of parameters 
required is given by the Weyl's dimension formula [18]. The dimension of the pro- 
blem can also be reduced by making use of the symmetry of the molecule, and the 
formula above simplifies accordingly. In the example, in the case Sz  = 0, S = 0, we 
need only 3 parameters a, b = c, d, and eq. (4.5) reduces to the R H F  equation 

b 2 = a d ,  

or, making use of the normalization condition, 

(a + d) 2 = 1. 

4.4. CONFIGURATION INTERACTION 

A natural question that arises is: How is a result obtained in the basis (~I)I trans- 
formed on changing to another induced basis ( X I  ) I = (Xi~ A . . . A Xi , )  i~ <... < i, ? 

If we call u the linear mapping of E defined by 

~' = u ( x i )  , for all i, 

and A'u the induced mapping on A ' E  defined by 

A~u(X~) = u ( x i ~ ) A . . . A u ( x i , ) ,  for all I ,  
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then Anu is such that 

Anu(Xz) = ~Pl, 

and can be used to transfer results from one basis set to the other. The numerous 
properties of A'u will be extensively used in a forthcoming paper [19]. 

The relevant set of spin-orbitals ~u i being chosen, the variational space explored 
by a CI calculation is the vector space spanned by the multi-configurations of the 
CI. 

Remark 4.10 
The space of the multi-configurations that belongs to any possible reference 

space of, at most, p configurations (these p configurations being any elements of the 
vector space V spanned by say h given configurations) is the space denoted L p of 
elements of V whose length is less than or equal top, 

A variational process in L p could be used to give a good reference space ofp config- 
urations, and would be useful to test a code like CIPSI [20] which selects reference 
spaces in a perturbational way. 

5. Conclus ion  

Any profound result of quantum physics is expected to be expressible in terms 
of basis set independent (i.e. algebraic) concepts. In this regard, the new algebraic 
concepts of internal space, core space, length of a multiconfiguration have been 
introduced. 

In the study presented here, the variational observable does not appear expli- 
citly, it can be the Hamiltonian or any other operator for which there is a varia- 
tional theorem, it may include relativistic terms or not. 

The proof of Brillouin theorem presented here is different from the usual one 
because it only relies on a simple property of Hermitian matrices, and is interesting 
because it gives directly more general functions satisfying Brillouin theorem. 

Equations (4.1)-(4.4) are algebraic, i.e. they do not imply any specific basis set, 
thus it is obvious that a CASSCF procedure is invariant under a unitary transfor- 
mation of the basis set orbitals. 

One of the main features of our approach is that, when we choose a basis set, 
we deal with only one kind of coefficients, instead of two kinds of redundant coeffi- 
cients in the usual MCSCF theory. This affords comparison of the various varia- 
tional methods in the same framework, which is not the case in the traditional 
approach where the one-electron basis set is ever changing in the optimization pro- 
cess. Moreover, this approach suggests a new way to construct a CASSCF pro- 
gram (for small-size problems at least), since, actually, eq. (4.3) gives the constraint 
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tha t  an  op t imiza t ion  with  cons t ra in t  a lgor i thm needs to explore the re levant  
energy surface.  

But  the ma in  interest  o f  the equa t ions  o f  this paper  lies in the new insight  in quan-  
t u m  chemis t ry  me thods  they  provide.  So far C A S S C F  equa t ions  h a d  been investi- 
ga ted  f rom the numer ica l  analysis  po in t  o f  view. We have given here algebraic and  
pure ly  analy t ica l  equat ions .  These three levels should  no t  be seen in a hierarchical  
m a n n e r  but  as fo rming  a t r in i ty  in q u a n t u m  chemistry .  
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